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LEITER TO THE EDITOR 

Monte Carlo simulation of a kinetic Ising model for 
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MontrCal, Quebec H3A 273, Canada 
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Abstract. We have developed a Monte Carlo method for the interfacial dynamics of a 
two-phase Ising-like system made unstable by a temperature gradient. Dendritic shapes 
form and rapidly reach an asymptotic regime in which their tip velocities are approximately 
constant with time. A power-spectrum analysis of interfacial fluctuations in the asymptotic 
regime is consistent with roughening. 

Over the last few years there has been important progress in the study of pattern 
formation during crystal growth [l-81. The most well known example is the growth 
of dendritic crystals, such as snowflakes. In this case, a single crystal in an undercooled 
melt grows by the diffusion of latent heat from the crystal to the melt into a complex 
dendritic structure. For a given undercooling, experiments show that the tips of the 
branches of the dendrite grow at a particular constant velocity U and a particular radius 
of curvature 1/R, whereas simple theories find that only the product uR is selected. 
The challenge, then, has been to determine how a particular curvature and velocity 
are selected in the asymptotic steady-state regime [ 1,2]. The problem has usually been 
formulated in terms of the diffusion equation for temperature in the supercooled melt 
with moving boundary conditions at the crystal-melt interface. It is then argued [ l ]  
that selection in dendritic growth is determined by ‘microscopic solvability’, where a 
small length scale causes a singular perturbation to the continuum equations. The 
physical idea is that the surface tension determines short wavelength fluctuations, and 
that these fluctuations determine the long wavelength properties of dendrites. The 
predictions of microscopic solvability are in reasonable agreement with experimental 
data [ l ,  3,4], but it remains the subject of current investigations [ 5 ] .  

Because this is a moving boundary-value problem, analytic methods are difficult. 
Another approach is through numerical modelling. There, typically, one either solves 
the continuum equations on a discrete mesh or uses lattice-gas automata which model 
the continuum equations by means of a prescription for small length scales. While 
these methods have been useful, and have led to important insights, they have an 
inherent weakness, since microscopic solvability has established that the continuum 
equations are singular on small length scales. Thus, for example, unusual behaviour 
on small length scales in lattice-gas automata need not be physically meaningful. For 
this and other reasons, numerical studies are used most often only for two-dimensional 
investigations of steady-state behaviour, or involve approximating the full diffusion 
equation by the Laplace equation for the temperature field. 

However, if behaviour is sensitive to fluctuations on small length scales, it is natural 
to develop a fully microscopic description. Thus, for the first time, we have introduced 
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a Monte Carlo method to simulate the unstable dynamics of a simple microscopic 
Ising-like Hamiltonian. In this way, we need take no special care to ensure the moving 
boundary is behaving correctly. Furthermore, we can investigate the sensitivity of 
dendritic growth to behaviour on small length scales in a manner independent of the 
mathematical technique of microscopic solvability. 

Our algorithm is an adaptation of the microcanonical Monte Carlo method of 
Creutz [9]. If differs from existing Monte Carlo-like methods for this problem [6-81 
in that it introduces an effective way to control the temperature by including thermal 
fields in a natural way [lo]; the calculation closest to ours was a study of coarsening 
by Guo and Jasnow [6]. By contrast, the usual Monte Carlo algorithm fixes the 
temperature by a prescribed interaction of the dynamical system with a heat bath, a 
useful approximation if the time scales over which thermal diffusion occurs are very 
fast. But, in crystal growth, where the dynamical processes are controlled by local 
variations in temperature, it is clearly inadequate. 

We apply the algorithm to simulate the Mullins-Sekerka instability of crystal growth, 
and demonstrate that we quickly reach the asymptotic regime in which dendrites grow 
at constant velocities. We do not find that dendrites are sensitive to short-length-scale 
behaviour: they actually support large spontaneous roughening fluctuations on small 
length scales. This implies that the algorithm successfully simulates correct physics 
on all length scales. 

The Hamiltonian is the two-dimensional ferromagnetic Ising model in a constant 
field, modified so that each spin-up term is %fold degenerate [lo]: 

X = - J C  C T ~ U , + S C U ~  
( U )  I 

where J is the interaction constant, 6 is the field, the sums ( 0 )  run over distinct 
nearest-neighbour pairs, and the spins take on a value of ai = *l. With a degeneracy 
9 for the U = +1 states, it is then easy to show that there is a first-order phase transition 
at the temperature T, = 26/ln 9 (so long as T, is less than the critical temperature 
T, = 2.2695 of the underlying Ising model), and that the latent heat of the transition 
is approximately 26 (so long as the equilibrium magnetisation at T,,, is close to unity). 
With this Hamiltonian, U = +1 corresponds to the ‘liquid’ phase, and w = -1 to the 
‘solid’. Since 9 need not be an integer, an appropriate choice of 6 and 9 allows us 
to minimise computational problems: we choose 6 = J so that all energy changes can 
be measured in units of 26, and 9 = 3.01 so that T, is OAT, and the dynamics are fast 
enough for acceptable run times. Note, in particular, that since we have a well defined 
microscopic Hamiltonian, quantities such as anisotropic surface tension enter in a 
natural way. 

Because our adaptation of the Creutz algorithm [lo] places the Ising system in 
contact with a system of ‘demons’, with one demon per lattice site each carrying energy, 
the dynamics corresponds to model C in critical dynamics, although here we are 
considering a first-order transition. The two boundary temperatures are set at T, and 
0.2T, respectively, so that the geometry is of a solid at its melting temperature in 
contact with a supercooled liquid. In addition, to increase the diffusion length and 
reduce the run time, each spin accesses the demon on its own site and those of its 
nearest neighbours. We consider lattices of size of 1024 x 128, large enough that finite 
size effects are unimportant for the structures we observe, and employ 100 independent 
runs of duration lo4 Monte Carlo steps (MCS) per spin. Runs were begun with a flat 
interface parallel to the boundaries, with 10% of the rows set solid. The initial demon 
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energy distributions were chosen to be consistent with uniform temperatures of T,,, 
and O.2Tm in the solid and liquid, respectively. 

Typical results for the development of the interface with time are shown in figure 
1. It is clear that even at very early times ( t  - lo3 MCS) the interface shows precursors 
of the dendritic structures which form more fully at a later stage. In particular, the 
characteristic spacing between dendrites, approximately 70, is already evident at early 
times (lengths are in units of lattice spacings). We also note that there is relatively 
little sidebranching. The most interesting feature of these results, the large fluctuations, 
will be discussed later. First, however, we establish that we are in the asymptotic 
regime by computing the velocity of the dendrites, comparing our results with simple 
theories, and looking for scaling. In particular, figure 2 demonstrates that, after an 
initial period of rapid growth, the length of the interface s increases at a constant rate. 
We have also computed the tip velocity of typical dendrites, and found U - 6 x lo--' per 
MCS, which is consistent with this rate. 

It is useful to compare our data with the predictions of simple theory for the 
late-stage regime [ 2 ] .  Agreement is good. To see this, we estimate? the capillary length 

lo00 ncs 

Figure 1.  Evolution of typical interface. Horizontal bar shows 100 lattice spacings. 
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MCS x 1o-j 
Figure 2. Interface length s against time. Note the data point at MCS = 0. 

f We estimate the diffusion length from observation o f  the temperature fields. To estimate the dimensionless 
undercooling, we require a value o f  the specific heat, which is approximately 1.2. 
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do-  1, the diffusion length 1 - 100, and the undercooling A-0.8. The velocity uo of 
the interface itself is u 0 - 6 x  per MCS, and the tip radius R - 6 .  Thus, if we 
calculate the characteristic wavelength using 

A = 2 7 r a  

we obtain A - 60, compared with 70 for the simulation. If we calculate the tip velocity 
using the simple expression 

taking the diffusion constant D = u,1/2, we obtain v /  uo - 4, compared with the value 
of 10 we observe. These values for A and U also confirm that we have reached the 
asymptotic regime. 

Further insight comes from the power spectrum P (  q) of fluctuations of the interface, 
shown in figure 3 as a function of wavenumber q. For this analysis, overhangs of the 
interface were eliminated by projecting them onto the horizontal plane parallel to the 
original interface?. In figure 3 ( a )  we show that the q + 0 part of this spectrum scales 
with the growing length s of the interface, as one would expect, in the late stages of 
growth. All these results imply that the Monte Carlo algorithm is successfully simulating 
the growth of dendrites from the initial instability to the late-time asymptotic regime. 

The most striking feature of our results is that the dendrites support short-wavelength 
fluctuations which can be interpreted as roughening: notice the large fluctuations in 
figure 1, and P (  q) in figure 3( b). In the latter figure, we see that the interface fluctuations 

) -3  .#)-1 w-2 1 
9 q/n 

Figure 3. Power spectra P ( q )  against wavenumber q for selected times: ( a )  low q, late-time 
data, scaled with ( q / s ) 2 ,  0 10000 MCS, x 8000 MCS, A 7000 MCS, + 5000 MCS; (b)  high 
q data, line of slope -2 added to guide the eye, dotted curve 10 000 MCS, broken curve 
5000 MCS, full curve 1000 MCS. 

t To check that this did not bias our results, we have also parametrised the interfaces in terms of arc length 
and local orientation coordinates, and camed out a power spectrum analysis with respect to a wavevector 
conjugate to the arc length. These spectra are similar to those from the projection ansatz, and we will 
present them in a future paper. 



Letter to the Editor L571 

on the dendrite have the l / q 2  spectrum of equilibrium capillary-wave roughening?. 
As far as we can tell, they play no direct role in controlling the instability. 

In conclusion, we have simulated a microscopic model of dendritic growth with a 
Monte Carlo algorithm. After a short transient growth following the initial instability, 
the dendrites grow at constant velocity. The relationship between tip velocity and tip 
radius is found to be in accord with simple arguments, and the late stages can be 
characterised by scaling behaviour. Our most interesting result is that the growing 
dendrites support large roughening fluctuations, which appear to be in local thermody- 
namic equilibrium. We are currently extending the algorithm to study pattern formation 
during both directional solidification and three-dimensional dendritic growth, and are 
investigating the detailed predictions of microscopic solvability. 
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